
Accurate Addressing Best Practices
By Gaston Hummel and Tom Thomas, February 7, 2019

Contents
Abstract .. 1

Spectrum Flows for Accurate Addressing .. 2

Web Site Integration .. 3

Front End (Angular Application) .. 5

Building the Angular App and deploying it into Spectrum ..24

Security Settings in Spectrum to Enable Accurate Addressing ...26

Appendix A – Web Service Details ...30

Shape of AutoComplete/Type-Ahead Web Service ...30

Shape of Address Resolution Web Service ..31

Appendix B – Download Locations ..32

Sample Angular App using admin/admin credentials ...32

Sample Angular App using no login credentials ..33

Advanced Angular App using admin/admin credentials ...33

Abstract
Poor quality customer data imposes costs and risks on businesses. Gartner research, Harvard

Business Review and Forbes Magazine agree that organizations estimate poor data quality to be

responsible for an average of $15 million per year in losses. These costs are not solely financial.

Businesses experience loss of reputation, missed opportunities and higher-risk decision making as

the result of low confidence in data.

Delivery of one in twenty online orders fails on the first attempt, costing organizations an average of

$15 per failed delivery.

18% of customer records in people databases such as CRM systems is duplicate. Corporate data is

growing at around 40% annually and each duplicate record costs organizations $20 to $100 per year

in terms of time spent on upkeep and storage, not to mention the impact this has on customer

experience.

What are the root causes of these issues? Two root causes are not validating addresses (and other

contact information) at the point of capture and not normalizing the formats of captured names and

addresses. Solutions exist to both problems but effective solutions are not as simple as they might

first appear.

A prime opportunity to capture and validate accurate address details is during the checkout process

of an online order or the online signup process for a new service. Many organizations have taken a

first step towards improving address capture at these customer touchpoints by implementing

AutoComplete/Type-Ahead solutions where the customer can just start typing their first address and

a list of address matches pops up for the customer to select. While such an AutoComplete/Type-

Ahead solution is convenient for the customer, it by no means solves all your addressing problems.

Often the addresses presented by the AutoComplete/Type-Ahead datasets include building

addresses both with and without suite or apartment numbers, meaning a customer selects their

correct building address and overlooks that they selected a non-deliverable address by not including

their apartment number.

Therefore when a customer selects an address presented in an AutoComplete/Type-Ahead solution

it is important to validate that the selected address is actually a complete and verified as deliverable.

It is possible to maintain an optimal customer experience in the event of a selected address being

non-deliverable by either automatically fixing it or presenting the user with additional validated

address options for selection. Automatic fixes can include automatically adding suite numbers to

addresses based on entered company names or automatically fixing misfielded data such as name

that have been included in the address field.

Beyond validation, normalizing captured names and addresses can ensure consistency in customer

records across all systems and avoid creating duplicate records as the result of capturing slightly

differently formatted customer names and addresses during different customer interactions across

your different touchpoints.

There are two parts to this paper. The first looks at how the optimal Spectrum flows work to provide

AutoComplete/Type-Ahead functionality and then validate selected addresses as well as seamlessly

(auto) correct non-deliverable addresses. The second section looks at best practices for integrating

the Accurate Addressing solution with your front-end and back-end systems.

Spectrum Flows for Accurate Addressing
The Accurate Addressing solution relies on two Web services API workflows. When used together,

they accomplish the desired result of “getting the right address at the right time.” The workflows

integrate easily into a web interface as described in detail in this document.

Both the Interactive AutoComplete/Type-Ahead and Real-Time Address Resolution services are

simple REST web services.

AutoComplete/Type-Ahead service – processes characters as they are typed into the address field

of an online form. The engine searches its source data to dynamically predict and compile a list of

address candidates. As the customer types their address, an address candidate list pops up for the

user to select the correct address and minimize typing.

• AutoComplete/Type-Ahead expedites an address entry processes by reducing keystrokes. It

resolves most common address entry problems by correcting mistypes and misspells. It

eliminates parsing and misfielding of data by auto-populating fields on selection. It includes

secondary addresses like apartment numbers when available to ensure selection accuracy.

It is possible to filter the returned address candidates by postal code or geolocation for a

faster, more intuitive experience and the maximum returned results is configurable.

• AutoComplete/Type-Ahead source data is optimized for returning fast results. Commonly,

this data does not contain information about location accuracy or postal deliverability,

making it critically important to complement the AutoComplete/Type-Ahead step with an

Address Resolution service.

Address Resolution service - captures a selected address from an AutoComplete/Type-Ahead

candidate list. It then standardizes and verifies the address against trusted third party source data

(such as postal or geolocation data if desired) and returns a validated, postal deliverable or highly

accurate geo-locatable address. If the candidate address does not validate to postal delivery or to

geolocation accuracy standards, a list of verified address suggestions is output and displayed for

selection as available. Additionally, algorithms including both phonetic and non-phonetic heuristics

determine the accuracy and relevance of address suggestions.

• Address Resolution benefits additionally by standardizing and validating military, highway

contract, rural route and PO Box addresses. It permits additional data quality processing

should an address by selected by override. It resolves multi-match addresses where a pre or

post directional is missing or incorrectly entered, appends accurate secondary addresses

based on business name, applies postal conversation changes when available to keep

addresses current and it returns an abundance of additional information about how the

address matched and about its accuracy.

• The Address Resolution service returns all the information necessary to make confident

business decisions based on address accuracy.

Web Site Integration
A video of a demo of a sample implementation of the Accurate Addressing solution is available at

https://youtu.be/70fDFt_3eio.

The Accurate Addressing solution calls two RESTful web services. One to return AutoComplete/Type-

Ahead matches as the user enters their address, and an Address Resolution service to validate the

deliverability of the selected address from the AutoComplete/Type-Ahead. The Spectrum flow

behind the validation web service will also fix or propose alternated validated address options in

case a selected address in the AutoComplete/Type-Ahead is non-deliverable.

Two components play a role in the Accurate Addressing solution.

https://youtu.be/70fDFt_3eio

For the AutoComplete/Type-Ahead, you want your customer to see matched address results as they

type with minimal delay, yet at the same time you want to minimize the load on your Spectrum

server and minimize the impact of poor network bandwidth on the service. The solution is to use

Reactive JavaScript extensions, which includes Observables, enabling you to set things like:

• debounceTime: how long the input field should be unchanged before calling out to the

server. If your customer is rapidly typing an address, it is best to wait for them to pause for

say 300 milliseconds before sending a request for matches to the server. This limits server

and network load.

• distinctUntilChanged: should your customer enter text but then delete/correct it, then there

is no point sending it to the server unless it has changed since the last request to the server.

• filter: check that the length of the input is not zero to avoid sending empty requests to the

server.

https://rxjs-dev.firebaseapp.com/

Front End (Angular Application)
The frontend demo in the above video uses the PB Design System. The PB Design System is available

for download from Github at https://github.com/PBGUX/pb-design-system and includes unbranded

options so that you can configure it to match your brand. It is based on the Angular web framework,

a complete modern web framework open sourced by Google with most necessary feature built-in.

For example, the Reactive JavaScript extensions (RxJS) come packaged with Angular by default.

The AutoComplete/Type-Ahead part of the solution needs to pass the country of the address into the

search query. The demo sets the country automatically to the country of the user’s browser, but

provides an option for the user to override the country if they are entering an address in a different

country.

Pitney Bowes offers a GeoLocation service that can determine a user’s location based on their IP

address or Wifi Access Point MAC address. When the user connects to the web application it calls

these services.

Components make up an Angular web application. Each section of the user interface or even

element can be its own component and embedded into other components. Each component

consists of four files by default:

1. HTML file containing the content.

2. TS, Typescript file containing the logic. Typescript is a type safe language from Microsoft

that compiles down to JavaScript.

3. SCSS file(s) containing the styling.

4. SPEC.TS file containing unit tests.

This paper is not a thorough introduction to Angular but aims to share the basics that you will need

to implement an Accurate Addressing solution inside your own portal.

Much of this paper will focus on a component I called cardcontent, which contains the address entry

field. Let us start by looking at the AutoComplete/Type-Ahead part of cardcontent.component.html.

Styling is associated with the form using the class called form. The formGroup setting associates the

form with settings in the Typescript. autocomplete is set to off to prevent the browser’s saved

values from appearing and interfering with the address suggestions made by the

AutoComplete/Type-Ahead service.

https://github.com/PBGUX/pb-design-system
https://angular.io/
https://locate.pitneybowes.com/geolocation

The above two form-groups display the input for Name and Firmname. The ngModel setting ties

their values to the specified variable in the component’s Typescript. The (input) attribute of the

cardName input element specifies that the normalizeName function in the component’s Typescript

is called whenever text is typed into the field.

The ngModelOptions’ standalone: true setting decouples the Name and Firmname controls from the

address input with its sophisticated AutoComplete/Type-Ahead controls.

The (blur) attribute specifies that the saveFirmName function is called in the component’s Typescript

when the user moves their cursor outside the Firmname field.

The label for this field contains the word “Address”, followed by icons with popover descriptions

that conditionally show based on an address being selected and the validity of the selected address.

We will later look at how the values addressValid and getAddressDescription are set in the

Typescript.

The attributes of the input field are:

id Associates the input with its label
autocomplete Taken over from the PB Design System Sample

placeholder The text that appears in the input field before
the user enters any data.

autocorrect Option to autocorrect the data the user enters
as they type.

type The type of input field.

name Not required but included for completeness.
class Used for styling this element.

ngClass A way of applying the is-invalid class to the
input element when the address is invalid and
the address field has been touched.

formControlName Links this field in the HTML to the formControl
in the Typescript file.

ngbTypeahead Specifies the function in the Typescript file to
call when user enters new data.

resultFormatter Specifies the function in the Typescript file
called with each item of the array returned
from the AutoComplete/Type-Ahead web
service in order to return the string displayed in
the AutoComplete/Type-Ahead matches for
selection.

selectItem Specifies the function in the Typescript file
called when the user pick an address from the
AutoComplete/Type-Ahead options. $event is
the selected item passed into the function.

required Indicates not to submit the form when the
address input field is blank.

The span shows a spinner to the right of the input field when then UI has sent an address string to

the web server and is awaiting a response. Searching is toggled between false and true by functions

in the component’s Typescript file, which will be explained later.

The p (paragraph) tag is displayed if the user tries to submit the form with a blank address field.

The app-addressoptions is another Angular component. Here you can see how one Angular

component gets included in another. As described in the Abstract, sometimes an address picked

from the AutoComplete/Type-Ahead matches can be for a building, but not be a deliverable address.

For example, it might be missing a suite or apartment number. These types of issues are resolved by

calling Address Resolution service with the selected address. This flow returns an array of one or

more corrected and validated addresses. If it is possible to fix the address without requiring

additional user input then the returned array contains one verified address. This happens if, for

example, a firm name is provided that can be used to automatically add the correct unit number and

in such cases the address picked by the user is automatically corrected to the validated address with

unit number.

However, when there are multiple possible unit numbers for a selected address then multiple

validated address options get from the Address Resolution service. These displayed in the app-

addressoptions component for the user to select. This component is normally hidden unless

functions in the Typescript file sets showAddressOptions to true, which will happen when more than

one validated address is returned and the user needs to select the correct one.

The input with the reset button resets the form and calls the resetForm function in the Typescript to

clear setting related to the form that are saved in other components like appdataService.

We will now look at how the functions called from the input field in the HTML file of the component

work in the corresponding Typescript file of the component.

The Typescript starts by importing the Angular directives common to most UI components.

It also imports the directives for controlling forms.

Next, we import the Reactive JavaScript extensions, mentioned earlier, to deal with when to send

typed content to the server and how to wait for a response. RxJS is included with Angular.

Here we are importing three service components that we wrote as part of this implementation.

Service components in Angular are a common way of sharing data between multiple components.

An example of how service components are useful here is when dealing with an Address Resolution

service web-service-response. If the response array contains more than one validated address

option, then two UI components need access to this response. The cardcontent component to show

the first item in the response and provide data to the condition that decides if the addressoptions

component is shown and the addressoptions component also needs the response to be able to

display validated address alternatives. We will describe these service components in more detail

later. Refer to Appendix A for details on the two web services used for Accurate Addressing.

Selector defines how the cardcontent component is selected in its parent component. templateUrl

defines the file containing the HTML content for this component and styleUrls specifies the files

containing details how to style this component.

Each Angular component needs to export a class on initialization. Variables and their default values

are set next. The search related fields and function deal with the showing and hiding of the spinner

to the right of the input field when communicating with the server.

The constructor initializes the services for use in the cardcontent component and upon initialization,

subscribes to events emitted by these services. We will discuss these subscriptions in more detail

later.

Upon initialization of this component, the createFormControls and createForm functions are called

to create these. See below.

The resetForm function is called to reset the variables to their original values when the form is reset.

The normalizeName function is called when the text in the Name input field changes. If the length of

the entered text is longer than 4 characters then two functions in the nameService component are

called. The parseName service calls the Spectrum name parsing web service, requesting the name

parts but not requesting normalization of the first name. The normalizeName service calls the same

Spectrum name parsing web service, but requests the name parts including normalization of the first

name.

The saveFirmName function shares the entered Firmname with the appdataService, which in turn

shares it with the addressService for inclusion in its validateAddress function and respective web

service call to the Address Resolution service.

The search function is where the AutoComplete/Type-Ahead-magic starts to happen. An observable

observes the text in the address input field. The debounceTime waits for a pause of 300 milliseconds

in receiving text (the user typing) before proceeding. distinctUntilChanged holds off doing anything

unless the text has changed since the last request was sent to the server. So in a scenario where a

user types two characters and then deletes them since the last server request, then no new request

is sent to the server. Likewise, the filter function prevents server requests when the input field is

blank. Upon passing the previous filters, the Reactive JavaScript extensions prepare to send a

request to the server and the do function sets the searching variable to true, causing the spinner to

the right of the input field to show. The switchMap function unsubscribes from the previous

observable and subscribes to the new observable for the web service request it is about to send.

This is another best practice given to us by the Reactive JavaScript extensions. It prevents the UI

from responding to lots of previous (possibly slow) server requests and only listens to the most

recent one.

The getAddress function in the addressService is called with the country and the search term from

the input field. The map function receives the AutoComplete/Type-Ahead web service response and

returns just the addresses array from the response to the next do function. This do function

switches any searchFailed messages off. The return of (addresses) returns an observable of the

addresses for other functions to observe. The catch function is called if the web service request to

getAddress fails and when called will switch the searchFailed messages on and return and empty

array to indicate no matches are available for the user to pick. The do function on line 146 hides the

spinner in the right of the address input field. The merge function calls a function that hides the

search spinner whenever the UI code unsubscribes from an observable.

The resultFormatter function constructs a FormattedAddress from the address parts of each address

object in the returned array and returns this in the AutoComplete/Type-Ahead selection list in the UI.

The selectItem function specifies what to do when a user selects one of the addresses displayed in

the AutoComplete/Type-Ahead matches. The selected address object in the matches-array is

accessed using $event.item. This is then made available in the appdataService for other components

to and it is also emitted as an event should other components need to take action when an address

is selected. Finally, the validateAddress function is called with the selectedAddressObject.

The remaining lines of the cardcontent component’s Typescript file create the form and form-

controls and are boilerplate code taken from the PB Design System.

Now we will examine the getAddress and validateAddress functions in the addressService

component.

Injectable and HttpClient are standard node modules for dealing with web service requests.

AppdataService is a service for sharing data between the different components and spectrumUrl is

the base URL for accessing Spectrum. In the deployed version of the Angular app this will simply be

“/” but during development of the Angular app it will not yet be deployed in Spectrum.

@Injectable is an Angular directive that makes this service injectable and therefore usable by other

componets like the cardcontent component described earlier. After declaring the name of the class

to export, we define the variable used by the class and their initial values.

The constructor makes the HttpClient and appdataService available for use throughout the rest of

the class.

The getAddress function is called with the country and the address from the AutoComplete/Type-

Ahead address-input field. This returns an observable of the response of the web service call to

Spectrum. The observable is further handled by the search function in the cardcontent component.

Later we will look at how the NodeJS web server deals with this request.

The first part of the validateAddress function builds the Address Resolution service Query string

required to call this Spectrum flow. It does this by getting the Name and Firmname values captured

in the form and shared via the appdataService. It then adds the address components in the selected

address item from the selected AutoComplete/Type-Ahead response to the query string. The syntax

checks if each field has a value and if it has, adds it to the query string and if it does not then the

query string remains unchanged.

The second part of the validateAddress function returns an observer for the response of the web

service call to the Address Resolution Spectrum flow. The input parameters to this web service call

Name, Firmname and Address Components. We immediately subscribe to this observer and when

we get the web service response (see Appendix A for the response format). Lines 82 to 104 enrich

each address object in the response array with a formatted address.

Line 106 emits the enhanced response for other components to use. Finally, we store the first

returned address from the address validation in the appdataService for other components to use. In

the case of the Address Resolution flow having validated the address, or auto-corrected it then the

returned array contains a single element. If the address cannot be validated as deliverable then the

first address in the response array is the non-deliverable address including codes and a message why

the address in not deliverable. In this, last scenario the subsequent addresses in the response-array

are validated address, for example with apartment numbers added and intended for presentment to

the user for selection.

Now, let us look at how the cardcontent component subscribes and processes the returned

addresses.

In line 53 of cardcontent component’s Typescript we are subscribing to the newNaAddresses event

emitted by the validateAddress function of the AddressService. We set the variable address to the

first address in the array returned from validateAddress. If the array contains more than one

address then we want to show the showAddressOptions component in the UI for the user to choose

the correct address. We also patch the formatted address of this address object into the web form’s

address input field. If the response only contains one address, we hide the showAddressOptions

component from the UI. Next, we see if the validateAddress response contains a Firmname and

Name and if present, populate these into these respective fields in the UI.

Line 68 emits the address so that the newNaAddressSelected subscription below receives the

address and can update the UI accordingly. This emit / subscribe programming pattern is used so

that the newNaAddressSelected subscription can deal with both single returned addresses (from the

Address Resolution Spectrum web service) as well as when a user selects one of the address options

in the addressoptions component.

Line 72 listens for when a new address of multiple validated address options is selected by the user

or for when the validateAddress function returns a single address. Line 73 hides the addressoptions

component because the final validated address is now ready for display.

The FormattedAddress field’s value is patched into the address input field in the HTML. Next t is

stored in the component’s state and in the appdataService for use by other components. Finally, we

set the checkmark or error symbols in the address input field’s label and set the

getAddressDescription, which displays on hovering over the symbol to the Message field value of the

address object of the validateAddress response-array.

Let us now look at the addressoptions component. The addressoptions component shows validated

address options for the user to select when the originally selected address in the

AutoComplete/Type-Ahead is incomplete. It is responsible for the highlighted content below.

Below is the HTML for the addressoptions component.

First, we display a paragraph explaining that the address selected from the AutoComplete/Type-

Ahead options is not a deliverable address. Preceding the paragraph is a warning icon and a popup

message that appears when the user hovers over this icon. Next, we iterate over the addressOptions

returned from the web service call to the Address Resolution Spectrum flow and output a checkbox

item for each address, except the first address, which we write into the address input field. Each

checkbox is followed by a symbol indicating whether the address has been validated as deliverable.

This, along with a descriptive message comes from the response to the Address Resolution Spectrum

web service call. See Appendix A for details about the structure of the response.

Below is the associated Typescript containing the logic for the addressoptions component.

We start by importing the standard Angular directives for any visual component along with

AppdataService that we use to share data across the different components.

The selector specifies how to select this component its parent components, the templateUrl points

to the HTML for the component and styleUrls to the styling.

addressOptions is initialized as an empty array on line 10 to prevent errors when no address options

have been returned from the Address Resolution web service yet.

The constructor initializes the appdataService and makes it available for use throughout the

component. On initialization, this component also subscribes to the newNaAddresses event emitter,

which emits the response to the Accurate Address Spectrum web service call. Unlike, the

cardcontent component which is interested in the length of this response to know whether to show

the addressoptions component or not, the addressoptions component is interested in the length in

order to decide if it needs to prepare any content for display! If there is more than one

addressOption returned, we add an index and id to each address object in the array so that we can

easily associate labels with the checkbox inputs in the HTML and the HTML can easily communicate

with the Typescript what address is selected. Line 23 removes the first item from the array of

returned addresses because the cardcontent component deals with displaying this and the

addressoptions component only needs to concern itself with the subsequent validated addresses

and present these for selection.

On selecting a checkbox in the HTML, the changeAddress function in the Typescript is called with the

index of the selected address. The changeAddress function then proceeds with emitting the

Firmname and Name from the response so that the cardcontent component can subscribe to these

updates and update them in the HTML of the cardcontent component. Finally, the changeAddress

function emits the newly selected address object. It is the cardcontent component, discussed earlier

which subscribes to this event and handles it further including hiding this addressoptions component

and setting the value in its address input to the FormattedAddress value of the selected address.

We will now look at the AppdataService component that we use to share date and updates between

the different components of the Angular application.

The EventEmitter is imported so that the AppdataService can manage event emitters that are used

via the emit and subscribe methods in the different components to notify each other of changes to

data. Next, we define the variables used in this component and initialize their values.

The above functions allow the different Angular components to set and get the variable values and

thereby share them.

The EventEmitters allow the different Angular components to emit and subscribe to events on the

named channels. Some of the EventEmitters emit string values and others JavaScript Objects as

JSON. It is also possible to share boolean values using this technique.

The Angular application uses the app.module.ts file to define all the components that make up the

app. This file imports and initializes the components and services used by the application. The one

used for the demo can be previewed below.

Line 37 in app.module.ts exports the AppComponent, the entry point into the Angular app.

The AppComponent’s Typescript is below.

The selector is how the index.html file connects to the Angular app.

Finally, we will look at how the AppCommonent’s HTML links the subsequent cardcontent

component for the rest of the demo:

Building the Angular App and deploying it into Spectrum
If you adapt this sample Angular app for your own use, you will need to build a deployable version

when you have finished your updates.

In config.ts, comment out line 1 and uncomment line 2. Once deployed in Spectrum, your Angular

app can access Spectrum web services at a relative path to its deployed location.

Set production: true in the environment.ts file.

From a command prompt in the root of your Angular app run the following command:

ng build

When the build completes, the production Angular app will be in the /dist/ci5 folder relative to the

root of your Angular app.

Open /dist/ci5/index.html and add a “.” In line 6. This tells the Angular app to access CSS, JS, Images

and other assets at a path relative to the index.html file.

Next, we need to create a Web Archive (WAR) for deployment into Spectrum’s Java application

server. Follow the steps below:

1. Create a folder called accurate-addressing.

2. Copy the contents of your /dist/ci5 folder including the updated index.html into this folder.

3. Add a subfolder called WEB-INF.

4. In the WEB-INF folder, create a new file called web.xml and paste the following content into

the file (you can download a copy of web.xml from here):

5. Zip up the contents of the accurate-addressing folder (do not Zip the folder itself but only its

contents)

6. Rename the Zip file accurate-addressing.war.

7. Copy and paste accurate-addressing.war into the following Spectrum folder:

D:\Program Files\Pitney Bowes\Spectrum\server\app\deploy

8. You will be able to access the Accurate Addressing sample application at

http://<spectrumIpAddress>:<spectrumPort>/accurate-addressing/ and the user interface

will look like this:

https://work.pb.com/:u:/g/personal/gaston_hummel_pb_com/EQXm8wtJkwdEhLyvSRDxDlwBc-OAxpwkuAlT7S1lPOAAdA?e=tMswSq

Note that the Name and AutoComplete/Type-Ahead address entry might not work yet due to some

security issues. These security issues can be resolved in several ways, three ways described in the

next section. Yu can also combine these techniques.

Security Settings in Spectrum to Enable Accurate Addressing

Option 1 – Disable Web Service Authentication in Spectrum
You can disable Basic Authentication for web services by following these instructions in the

Spectrum Administration Guide.

You will also need to disable authentication for web services by following these instructions in the

Spectrum Administration Guide.

Your Angular app will not yet deployed inside the Spectrum web application server during

development. Therefore, you will need to configure CORS (Cross Origin Resource Sharing) in

Spectrum during development. Detailed instructions are in the Spectrum Administration Guide. By

default, an Angular development environment serves web pages on http://localhost:4200, so you

will need to add locallost:4200 to the spectrum.jetty.cors.allowedOrigins setting in spectrum-

advanced.properties as indicated below. You will also need to set spectrum.jetty.cors.enabled=true

in this same file. Note that once you have deployed your Angular app to Spectrum then you can

remove the CORS settings. It is only required while you are developing your Angular app outside of

Spectrum.

Option 2 – Include Basic Authentication in the Web Service Calls to Spectrum from the

Angular App
Include Basic Authentication for the web service call your Angular app makes to Spectrum by

following these steps below.

Important Note

During development of the Angular app, you must disable authentication as outlined in Option 1

http://support.pb.com/help/spectrum/12.2/en/webhelp/AdministrationGuide-WebUI/index.html#WebServicesGuide/source/DisablingBasicAuthentication.html
http://support.pb.com/help/spectrum/12.2/en/webhelp/AdministrationGuide-WebUI/index.html#WebServicesGuide/source/DisablingBasicAuthentication.html
http://support.pb.com/help/spectrum/12.2/en/webhelp/AdministrationGuide-WebUI/index.html#Spatial/source/Administration/config/repository/turnoffsecurity.html
http://support.pb.com/help/spectrum/12.2/en/webhelp/AdministrationGuide-WebUI/index.html#Spatial/source/Administration/config/repository/turnoffsecurity.html
http://support.pb.com/help/spectrum/12.2/en/webhelp/AdministrationGuide-WebUI/index.html#WebServicesGuide/source/EnablingCORS.html
http://localhost:4200/

above and not include the { headers } setting in name.service.ts and address.service.ts. Even with

CORS enabled in Spectrum, web browsers will throw a CORS error and block access to resources on a

different domain, if the Angular web app attempts to include an authentication header in its request

to a different domain. You will need to apply these authentication and { headers } settings to your

app prior to building it and deploying it as a WAR to Spectrum as outlined above if the Spectrum

instance to which you deploy the WAR has Basic Authentication enabled for its web services.

Update the user and password in the config.ts file with the user credentials you want to use for

accessing the Accurate Addressing web services. It is advisable to create a new Spectrum user that

only has access to these two web services. That is because the user credential are in the client side

Angular app and therefore not secure. This is also the reason many organization use Option 3 below

so that no user credentials get share with the end-user’s web browser.

Next, you need to make some minor changes to your name.service.ts and address.service.ts files to

make them include the authentication credential in the web service calls they perform. The required

updated are highlighted below.

name.service.ts

address.service.ts

and

After the authentication updates you will need to build it for production again and redeploy it to

Spectrum by following the steps described above.

Option 3 – Host the Angular App on a Separate Web Server to Spectrum
In this scenario, the Angular app is not deployed to Spectrum but on a separate web server. That

web server serves the Angular app to the end user’s browser and relays web service requests to

Spectrum, adding authentication credentials in the process. A sample NodeJS / ExpressJS web server

implementation along with an appropriately adjust Angular app is available on request.

Example of deploying Accurate Addressing UI on separate web server

Appendix A – Web Service Details

Shape of AutoComplete/Type-Ahead Web Service
Called as the user is inputting their address.

Request
/rest/AutoCompleteLoqate/results.json?Data.AddressLine1=350%203rd%20Ave%20chu&Option.Ho

meCountry=USA

Response

Shape of Address Resolution Web Service
Called when the user selects on address from the list returned from the AutoComplete/Type-Ahead

service.

Request
/rest/NameAddress_StandardizeValidateRecommend/results.json?Data.AddressLine1=350%203rd%

20Ave&Data.City=Chula%20Vista&Data.StateProvince=CA&Data.PostalCode=91910

Response

Appendix B – Download Locations

Sample Angular App using admin/admin credentials
A sample web archive (WAR) file that works on a Spectrum instance with the default user credentials

admin/admin, can be downloaded here. Copy and paste accurate-addressing.war into the following

Spectrum folder:

D:\Program Files\Pitney Bowes\Spectrum\server\app\deploy

You will be able to access the Accurate Addressing sample application at

http://localhost:8080/accurate-addressing/

The source code for this Angular app is available here.

https://work.pb.com/:u:/g/personal/gaston_hummel_pb_com/EeAugZErIqVOrwp58cPXoJQBzMYFLYmBxFWbuOnJbFQvXQ?e=wwGHXH
http://localhost:8080/accurate-addressing/
https://work.pb.com/:u:/g/personal/gaston_hummel_pb_com/EQzUgnC766VIufVNaDBZ2s4B0iCQWnhWNQarOz-sBvpKcw?e=jKv9fS

Sample Angular App using no login credentials
A sample web archive (WAR) file that works on a Spectrum instance with authentication disabled is

available here. Copy and paste accurate-addressing.war into the following Spectrum folder:

D:\Program Files\Pitney Bowes\Spectrum\server\app\deploy

Also, follow the steps described in the above section to disable web service authentication on your

Spectrum instance. Sample spectrum-advanced.properties and spectrum-container.properties with

web service authentication disabled and CORS enabled for the default Angular development host are

also available for download.

You will be able to access the Accurate Addressing sample application at

http://localhost:8080/accurate-addressing/

Advanced Angular App using admin/admin credentials
A more advanced Angular app that supports Accurate Addressing for international addresses and

includes a Details button to view the actual web service requests and responses being exchanged

with the Spectrum server can be downloaded from here.

Copy and paste accurate-addressing-plus.war into the following Spectrum folder:

D:\Program Files\Pitney Bowes\Spectrum\server\app\deploy

You will be able to access the Accurate Addressing sample application at

http://localhost:8080/accurate-addressing-plus/

https://work.pb.com/:u:/g/personal/gaston_hummel_pb_com/EUlP8mRxX_dMiO4amJ9Hgx0BxOPcc_-yExQYtRDuMx7Z6w?e=ex8Tn3
https://work.pb.com/:u:/g/personal/gaston_hummel_pb_com/EWFZI_Eyf8pCozQtVjqfRZoBHrXiPk4Y3Yu3n-soeQM28g?e=UYEZDl
https://work.pb.com/:u:/g/personal/gaston_hummel_pb_com/ETEs2kBw8MFPvHNWN-BNZVoBPfqVJ9BvTCeiF9KxkREf6A?e=d1M5Yd
http://localhost:8080/accurate-addressing/
https://work.pb.com/:u:/g/personal/gaston_hummel_pb_com/ETwghcTCygpCmNF0GUwTSzcBZ-UETw56BGChGLog8vI_fQ?e=b9gz4f
http://localhost:8080/accurate-addressing-plus/

	Contents
	Abstract
	Spectrum Flows for Accurate Addressing
	Web Site Integration
	Front End (Angular Application)
	Building the Angular App and deploying it into Spectrum
	Security Settings in Spectrum to Enable Accurate Addressing
	Option 1 – Disable Web Service Authentication in Spectrum
	Option 2 – Include Basic Authentication in the Web Service Calls to Spectrum from the Angular App
	Option 3 – Host the Angular App on a Separate Web Server to Spectrum

	Appendix A – Web Service Details
	Shape of AutoComplete/Type-Ahead Web Service
	Request
	Response

	Shape of Address Resolution Web Service
	Request
	Response

	Appendix B – Download Locations
	Sample Angular App using admin/admin credentials
	Sample Angular App using no login credentials
	Advanced Angular App using admin/admin credentials

